If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5k^2-80=0
a = 5; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·5·(-80)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40}{2*5}=\frac{-40}{10} =-4 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40}{2*5}=\frac{40}{10} =4 $
| 4p^2-16p-48=0 | | 2/5x+2=3/4x+3 | | 7=-3m+34 | | 6/8=2m+3/8 | | 12+x/3=15 | | 7b-4=b | | (25(13^x))-((x^2)(13^x))=0 | | 7a-7=3a-3 | | 11y/14-2=3-7y/2 | | 9y-11-5y+8=0 | | 13x+29=6x-27 | | 6e=-30 | | 4x+5×=10 | | 11y/14-2=3-7/2 | | -3x=3x-(-12) | | (3c-4)-(5c-4)=-2c | | 41612x+26173=6271836 | | z^2+7z-5=0 | | 12=2/5x-4 | | -8-4x=-8(2x-8) | | 12=2/5x-5 | | 3p-1=-9+p | | 6x+14x-8=5(4x+4) | | 12=2/5x4 | | 216=(1/3)36h | | 1(w2)-36=0 | | 12*(x+x+x+10)=1560 | | 7r+8+2r=-3r-4 | | 1/3=4x=2(4x+2) | | 3x/5-27=24 | | 12-(x+x+x+10)=1560 | | 1/3+2x=1/4-4x |